Introduction

This chapters provides a framework for analysis of computational complexity of sparse recovery algorithms. See [GVL12] for a detailed study of matrix computations.

The table below summarizes the flop counts for various basic operations. A detailed derivation of these flop counts is presented in Basic Operations.

Summary of flop counts for various basic operations
Operation Description Parameters Flop Counts
\(y = \text{abs}(x)\) Absolute values \(x \in \RR^n\) \(n\)
\(\langle x, y \rangle\) Inner product \(x, y \in \RR^n\) \(2n\)
\([v, i] = \text{max}(\text{abs}(x))\) Find maximum value by magnitude \(x \in \RR^n\) \(2n\)
\(y = A x\) Matrix vector multiplication \(A \in \RR^{m \times n}, x \in \RR^n\) \(2mn\)
\(C = AB\) Matrix multiplication \(A \in \RR^{m \times n}, B \in \RR^{n \times p}\) \(2mnp\)
\(y = A x\) \(A\) is diagonal \(A \in \RR^{n\times n}, x \in \RR^n\) \(n\)
\(y = A x\) \(A\) is lower triangular \(A \in \RR^{n\times n}, x \in \RR^n\) \(n(n+1)\)
\((I + u v^T)x\)   \(x, u, v \in \RR^n\) \(4n\)
\(G = A^TA\) Gram matrix (symmetric) \(A \in \RR^{m \times n}\) \(mn^2\)
\(F = AA^T\) Frame operator (symmetric) \(A \in \RR^{m \times n}\) \(nm^2\)
\(\| x \|_2^2\) Squared \(\ell_2\) norm \(x \in \RR^n\) \(2n - 1\)
\(\| x \|_2\) \(\ell_2\) norm \(x \in \RR^n\) \(2n\)
\(x(:) = c\) Set to a constant value \(x \in \RR^n\) \(n\)
Swap rows in \(A\) elementary row operation \(A \in \RR^{m \times n}\) \(3n\)
\(A(i, :) = \alpha A(i, :)\) Scale a row \(A \in \RR^{m \times n}\) \(2n\)
Solve \(L x = b\) Lower triangular system \(L \in \RR^{n \times n}\) \(n^2\)
Solve \(U x = b\) Upper triangular system \(U \in \RR^{n \times n}\) \(n^2\)
Solve \(Ax =b\) Gaussian elimination, \(A\) full rank \(A\in \RR^{n \times n}\) \(\frac{2\, n^3}{3} + \frac{n^2}{2} - \frac{7\, n}{6}\)
\(A = QR\) QR factorization \(A \in \RR^{m \times n}\) \(2mn^2\)
Solve \(\| A x - b \|_2^2\) Least squares through QR \(A \in \RR^{m \times n}\) \(2mn^2 + 2mn + n^2\)
\(A^TA x = A^T b\) Least squares through Cholesky \(A^T A = L L^T\) \(A \in \RR^{m \times n}\) \(mn^2 + \frac{1}{3} n^3\)