

Sparse-plex Library Documentation

Contents:

	Introduction

	Getting Started
	Requirements

	Installation

	Getting acquainted

	Running examples

	Checking the source code

	Verifying the installation

	Configuring test data directories

	Building documentation

	Demos
	Dirac DCT Tutorial

	Basic CS Tutorial

	Library Classes
	Sparse recovery pursuit algorithms

	Common utilities

	Synthetic Signals

	Graphics and visualization

	Dictionaries

	Vector Spaces

	Combinatorics

	Matrix factorization algorithms

	External Code

	Noise

	Exercises
	Creating a sparse signal

	Creating a two ortho basis

	Creating a Dirac-DCT two-ortho basis

	Creating a random dictionary

	Taking compressive measurements

	Measuring dictionary properties

	Getting started with sparse recovery

	Developing the hard thresholding algorithm

	Developing the matching pursuit algorithm

	Developing the orthogonal matching pursuit algorithm

	Sparsifying an image

	Scripts
	Preamble

	Figures

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Sparse-plex is a MATLAB library for solving
sparse representation problems.

Currently the library is broken as it is going through
massive changes. Will update later.

The library website is : http://indigits.github.io/sparse-plex/.

Online documentation is hosted at: http://sparse-plex.readthedocs.org/en/latest/.

The project is hosted on GITHUB at: https://github.com/indigits/sparse-plex.

It contains
implementations of many state of the art
algorithms. Some implementations are simple
and straight-forward while some have taken extra efforts
to optimize the speed.

In addition to these, the library provides implementations
of many other algorithms which are building blocks for
the sparse recovery algorithms.

The library aims to solve:

	Single vector sparse recovery or sparse approximation problems

	Multiple vector joint sparse recovery or sparse approximation problems

The library provides

	Various simple dictionaries and sensing matrices

	Implementations of pursuit algorithms

	Matching pursuit

	Orthogonal matching pursuit

	Compressive sampling matching pursuit

	Basis pursuit

	Some joint recovery algorithms

	Cluster orthogonal matching pursuit

	Some clustering algorithms

	Spectral clustering

	Sparse subspace clustering using l_1 minimization

	Sparse subspace clustering using orthogonal matching pursuit

	Various utilities for working with matrices, signals,
norms, distances, signal comparison, vector spaces

	Some visualization utilities

	Some combinatoric systems

	Various constructions for synthetic sparse signals

	Some optimization algorithms

	steepest descent

	conjugate gradient descent

	Detection and estimation algorithms

	Compressive binary detector

The documentation contains several how-to-do tutorials.
They are meant to help beginners in the area ramp up
quickly. The documentation is not really a user manual.
It doesn’t describe all parameters and behavior of a
function in detail. Rather, it provides various code examples
to explain how things work. Users are requested to
read through the source code and relevant papers
to get a deeper understanding of the methods.

Getting Started

Requirements

While much of the library can be used on stock MATLAB
distribution with standard toolboxes, some parts of
the library are dependent on some specific third party
libraries. These dependencies are explained below.

MATLAB toolboxes

	Signal processing toolbox

	Image processing toolbox

	Statistics toolbox

	Optimization toolbox

Third party library dependencies

	CVX http://cvxr.com/cvx/

	LRS library https://github.com/andrewssobral/lrslibrary

	Wavelab http://statweb.stanford.edu/~wavelab/

	

We repeat that only some parts of the library and
examples depend on the third party libraries. You
can install them on need basis. You don’t need to
install them in advance.

Installation

	Download sparse-plex library from http://indigits.github.io/sparse-plex/.

	Unzip it in a suitable folder.

	Add following commands to your MATLAB startup script:

	Change directory to the root directory of sparse-plex.

	Run spx_setup function.

	Change back to whatever directory you want to be in.

Note

Make sure that MATLAB has write permissions to
the directory in which you install sparse-plex.
Some functions in sparse-plex create
some MAT files for caching
of intermediate results.
Moreover, the sparse-plex setup script also
creates a local settings file. For creating these
files, write access is needed.

Getting acquainted

The online library documentation includes a number of step-by-step
demonstrations. Follow these tutorials to get familiar with the
library.

Running examples

	Change directory to the root directory of sparse-plex.

	Go into examples directory.

	Browse the examples.

	Run the example you want.

Checking the source code

	Change directory to the root directory of sparse-plex.

	Go into library directory.

	Browse the source code.

	The source code for spx library is maintained in +spx directory.

	Unit-tests for the library are maintained in tests directory.

Verifying the installation

You will require MATLAB XUnit test framework to run the unit tests
included with the library.

	Change directory to the root directory of sparse-plex.

	Move to the directory library\\tests.

	Execute the runalltests.m script.

	Verify that all unit tests pass.

Configuring test data directories

Several examples in sparse-plex are developed
on top of standard data sets. These include
(but not limited to):

	Standard test images

	Yale Extended B Faces database (cropped images)

In order to execute these examples, access to the
data is needed. The data is not distributed along
with this software. You can download data and store
it on your computer wherever you wish. In order
to provide access to this data, you need to tell
sparse-plex where does the data lie. This can
be done by changing spx_local.ini file.
When you download and unzip the library, this file
doesn’t exist. When you run spx_setup, spx_defaults.ini is copied into spx_local.ini.

All you need to do is to point to the right directories
which hold the test datasets.

Specific settings in spx_local.ini are:

	standard_test_images_dir

	yale_faces_db_dir

For more information, read the file.

Building documentation

Only if you really want to do it!

You will require Python Sphinx and other related packages like
Pygments library etc. to build the documentation from scratch.

	Change directory to the root directory of sparse-plex.

	Go into docs directory.

	Build the documentation using Sphinx tool chain.

Demos

	Dirac DCT Tutorial

	Basic CS Tutorial

Dirac DCT Tutorial

This tutorial is based on examples\\ex_dirac_dct_two_ortho_basis.m.

In this tutorial we will:

	Construct a DCT basis

	Construct a Dirac-DCT dictionary.

	Construct a signal which is a mixture of few
impulses and a few sinusoids.

	Construct its representation in the DCT basis.

	Recover its representation in Dirac-DCT dictionary
using following sparse recovery algorithms

	Matching Pursuit

	Orthogonal Matching Pursuit

	Basis Pursuit

	Measure the recovery error for different sparse
recovery algorithms.

Signal space dimension:

N = 256;

Dirac basis:

I = eye(N);

DCT basis:

Psi = dctmtx(N)';

Visualizing the DCT basis:

imagesc(Psi) ;
colormap(gray);
colorbar;
axis image;
title('\Psi');

[image: ../_images/dct_256.png]
Combining the Dirac and DCT orthonormal bases to form a two-ortho dictionary:

Phi = [I Psi];

Visualizing the dictionary:

imagesc(Phi) ;
colormap(gray);
colorbar;
axis image;
title('\Phi');

[image: ../_images/dirac_dct_256.png]
Constructing a signal which is a combination of impulses and cosines:

alpha = zeros(2*N, 1);
alpha(20) = 1;
alpha(30) = -.4;
alpha(100) = .6;
alpha(N + 4) = 1.2;
alpha(N + 58) = -.8;
x = Phi * alpha;
K = 5;

[image: ../_images/impulse_cosine_combination_signal.png]
Finding the representation in DCT basis:

x_dct = Psi' * x;

[image: ../_images/impulse_cosine_dct_basis.png]
Sparse representation in the Dirac DCT dictionary

[image: ../_images/impulse_cosine_dirac_dct.png]
Obtaining the sparse representation using matching pursuit algorithm:

solver = spx.pursuit.single.MatchingPursuit(Phi, K);
result = solver.solve(x);
mp_solution = result.z;
mp_diff = alpha - mp_solution;
% Recovery error
mp_recovery_error = norm(mp_diff) / norm(x);

[image: ../_images/dirac_dct_mp_solution.png]
Matching pursuit recovery error: 0.0353.

Obtaining the sparse representation using orthogonal matching pursuit algorithm:

solver = spx.pursuit.single.OrthogonalMatchingPursuit(Phi, K);
result = solver.solve(x);
omp_solution = result.z;
omp_diff = alpha - omp_solution;
% Recovery error
omp_recovery_error = norm(omp_diff) / norm(x);

[image: ../_images/dirac_dct_omp_solution.png]
Orthogonal Matching pursuit recovery error: 0.0000.

Obtaining a sparse approximation via basis pursuit:

solver = spx.pursuit.single.BasisPursuit(Phi, x);
result = solver.solve_l1_noise();
l1_solution = result;
l1_diff = alpha - l1_solution;
% Recovery error
l1_recovery_error = norm(l1_diff) / norm(x);

[image: ../_images/dirac_dct_l_1_solution.png]
l_1 recovery error: 0.0010.

Basic CS Tutorial

This tutorial is based on examples\\ex_simple_compressed_sensing_demo.m.

In this tutorial we will:

	Create sparse signals (with Gaussian and bi-uniform distributed non-zero samples).

	Look at how to identify support of a signal.

	Construct a Gaussian sensing matrix.

	Visualize the sensing matrix.

	Compute random measurements on the sparse signal with the sensing matrix.

	Add measurement noise to the measurements.

	Recover the sparse vector
using following sparse recovery algorithms

	Matching Pursuit

	Orthogonal Matching Pursuit

	Basis Pursuit

	Measure the recovery error for different sparse
recovery algorithms.

Basic setup:

% Signal space
N = 1000;
% Number of measurements
M = 200;
% Sparsity level
K = 8;

Choosing the support randomly:

Omega = randperm(N, K);

Constructing a sparse vector with Gaussian entries:

% Initializing a zero vector
x = zeros(N, 1);
% Filling it with non-zero Gaussian entries at specified support
x(Omega) = 4 * randn(K, 1);

[image: ../_images/k_sparse_gaussian_signal.png]
Constructing a bi-uniform sparse vector:

a = 1;
b = 2;
% unsigned magnitudes of non-zero entries
xm = a + (b-a).*rand(K, 1);
% Generate sign for non-zero entries randomly
sgn = sign(randn(K, 1));
% Combine sign and magnitude
x(Omega) = sgn .* xm;

[image: ../_images/k_sparse_biuniform_signal.png]
Identifying support:

find(x ~= 0)'
% 98 127 277 544 630 815 905 911

Constructing a Gaussian sensing matrix:

Phi = randn(M, N);
% Make sure that variance is 1/sqrt(M)
Phi = Phi ./ sqrt(M);

Computing norm of each column:

column_norms = sqrt(sum(Phi .* conj(Phi)));

Norm histogram

[image: ../_images/guassian_sensing_matrix_histogram.png]
Constructing a Gaussian dictionary with normalized columns:

for i=1:N
 v = column_norms(i);
 % Scale it down
 Phi(:, i) = Phi(:, i) / v;
end

Visualizing the sensing matrix:

imagesc(Phi) ;
colormap(gray);
colorbar;
axis image;

[image: ../_images/gaussian_matrix.png]
Making random measurements from sparse high dimensional vector:

y0 = Phi * x;

[image: ../_images/measurement_vector_biuniform.png]
Adding some measurement noise:

SNR = 15;
snr = db2pow(SNR);
noise = randn(M, 1);
% we treat each column as a separate data vector
signalNorm = norm(y0);
noiseNorm = norm(noise);
actualNormRatio = signalNorm / noiseNorm;
requiredNormRatio = sqrt(snr);
gain_factor = actualNormRatio / requiredNormRatio;
noise = gain_factor .* noise;

Measurement vector with noise:

y = y0 + noise;

[image: ../_images/measurement_vector_biuniform_noisy.png]
Sparse recovery using matching pursuit:

solver = spx.pursuit.single.MatchingPursuit(Phi, K);
result = solver.solve(y);
mp_solution = result.z;

Recovery error:

mp_diff = x - mp_solution;
mp_recovery_error = norm(mp_diff) / norm(x);

[image: ../_images/cs_matching_pursuit_solution.png]
Matching pursuit recovery error: 0.1612.

Sparse recovery using orthogonal matching pursuit:

solver = spx.pursuit.single.OrthogonalMatchingPursuit(Phi, K);
result = solver.solve(y);
omp_solution = result.z;
omp_diff = x - omp_solution;
omp_recovery_error = norm(omp_diff) / norm(x);

[image: ../_images/cs_orthogonal_matching_pursuit_solution.png]
Orthogonal Matching pursuit recovery error: 0.0301.

Sparse recovery using l_1 minimization:

solver = spx.pursuit.single.BasisPursuit(Phi, y);
result = solver.solve_l1_noise();
l1_solution = result;
l1_diff = x - l1_solution;
l1_recovery_error = norm(l1_diff) / norm(x);

[image: ../_images/cs_l_1_minimization_solution.png]
l_1 recovery error: 0.1764.

Library Classes

Contents:

	Sparse recovery pursuit algorithms

	Common utilities

	Synthetic Signals

	Graphics and visualization

	Dictionaries

	Vector Spaces

	Combinatorics

	Matrix factorization algorithms

	External Code

	Noise

clustering
diclearn
bht

Sparse recovery pursuit algorithms

Contents:

	Matching pursuit

	Orthogonal matching pursuit

	Basis pursuit and its variations

	Compressive sampling matching pursuit

	Joint recovery algorithms

Introduction

This section focuses on methods which solve the
sparse recovery or sparse approximation problems
for one vector at a time. A subsection on
joint recovery algorithms focuses on solving problems
where multiple vectors which have largely common supports
can be solved jointly.

For each algorithm, there is a solver. The solver
should be constructed first with the dictionary / sensing matrix
and some other parameters like sparsity level as needed by
the algorithm.

The solver can then be used for solving one problem at a time.

Matching pursuit

Constructing the solver with dictionary and expected sparsity level:

solver = spx.pursuit.single.MatchingPursuit(Dict, K)

Using the solver to obtain the sparse representation of one vector:

result = solver.solve(y)

Using the solver to obtain the sparse representations of all vectors
in the signal matrix Y independently:

result = solver.solve_all(Y)

Orthogonal matching pursuit

Constructing the solver with dictionary and expected sparsity level:

solver = spx.pursuit.single.OrthogonalMatchingPursuit(Dict, K)

Using the solver to obtain the sparse representation of one vector:

result = solver.solve(y)

There are several ways of solving the least squares problem
which is an intermediate step in the orthogonal matching pursuit
algorithm. Some of these are described below.

Using the solver to obtain the sparse representation of one vector
with incremental QR decomposition of the subdictionary
for the least squares step:

result = solver.solve_qr(y)

Using the solver to obtain the sparse representations of all vectors
in the signal matrix Y independently:

result = solver.solve_all(Y)

Using the solver to obtain the sparse representations of all vectors
in the signal matrix Y independently using the linsolve method
for least squares:

result = solver.solve_all_linsolve(Y)

Basis pursuit and its variations

Basis pursuit is a way of solving the sparse recovery
problem via \(\ell_1\) minimization. We provide
multiple implementations for different variations of
the problem.

Note

These algorithms are dependent on the CVX toolbox.
Please make sure to install them before using
the algorithms.

Constructing the solver with dictionary and set of
signals to be solved arranged in a signal matrix:

solver = spx.pursuit.single.BasisPursuit(Dict, Y)

Solving using LASSO method:

result = solver.solve_lasso(lambda)
result = solver.solve_lasso()

Solving using \(\ell_1\) minimization assuming that
signals are exact sparse:

result = solver.solve_l1_exact()

Solving using \(\ell_1\) minimization assuming that
signals are noisy:

result = solver.solve_l1_noise()

Compressive sampling matching pursuit

Constructing the solver with dictionary and expected sparsity level:

solver = spx.pursuit.single.CoSaMP(Dict, K)

Using the solver to obtain the sparse representation of one vector:

result = solver.solve(y)

Using the solver to obtain the sparse representations of all vectors
in the signal matrix Y independently:

result = solver.solve_all(Y)

Joint recovery algorithms

	Cluster orthogonal matching pursuit

	Subspace clustering matching pursuit

Cluster orthogonal matching pursuit

Warning

This is new algorithm under research.

solver = spx.pursuit.joint.ClusterOMP(Dict, K)
result = solver.solve(Y)

Subspace clustering matching pursuit

Warning

This is new algorithm under research.

solver = SPX_SCluMP(Phi, K, options)
solver.recover(Y)
solver.cluster(Y)

Common utilities

Contents:

	Signals

	Working with matrices

	Norms and distances

	Sparse signals

	Comparing signals

	Working with Numbers

	Printing utilities

	Sparse recovery

Signals

Our focus is usually on finite
dimensional signals. Such signals
are usually stored as column vectors
in MATLAB. A set of signals with same
dimensions can
be stored together in the form of
a matrix where each column of the matrix
is one signal. Such a matrix of
signals is called a signal matrix.

In this section we describe some
helper utility functions which provide
extra functionality on top of existing
support in MATLAB.

General

Constructing unit (column) vector in a given co-ordinate:

>> N = 8; i = 2;
>> spx.commons.vector.unit_vector(N, i)'
0 1 0 0 0 0 0 0

Sparsification

Finding the K-largest indices of a given signal:

>> x = [0 0 0 1 0 0 -1 0 0 -2 0 0 -3 0 0 7 0 0 4 0 0 -6];
>> K=4;
>> spx.commons.signals.largest_indices(x, K)'
16 22 19 13

Constructing the sparse approximation of x
with K largest indices:

>> spx.commons.signals.sparseApproximation(x, K)'
0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 7 0 0 4 0 0 -6

Searching

spx.commons.signals.find_first_signal_with_energy_le
finds the first signal in a signal matrix X
with an energy less than or equal to
a given threshold energy:

[x, i] = spx.commons.signals.find_first_signal_with_energy_le(X, threshold);

x is the first signal with energy less
than the given threshold.
i is the index of the column in X holding
this signal.

Working with matrices

Simple checks on matrices

Let us create a simple matrix:

A = magic(3);

Checking whether the matrix is a square matrix:

spx.commons.matrix.is_square(A)

Checking if it is symmetric:

spx.commons.matrix.is_symmetric(A)

Checking if it is a Hermitian matrix:

spx.commons.matrix.is_hermitian(A)

Checking if it is a positive definite matrix:

spx.commons.matrix.is_positive_definite(A)

Matrix utilities

spx.commons.matrix.off_diagonal_elements returns
the off-diagonal elements of a given matrix
in a column vector arranged in column major order.

A = magic(3);
spx.commons.matrix.off_diagonal_elements(A)'
ans =
 3 4 1 9 6 7

spx.commons.matrix.off_diagonal_matrix zeros out
the diagonal entries of a matrix and
returns the modified matrix:

spx.commons.matrix.off_diagonal_matrix(A)
ans =

 0 1 6
 3 0 7
 4 9 0

spx.commons.matrix.off_diag_upper_tri_matrix returns
the off diagonal part of the upper triangular part
of a given matrix and zeros out the remaining entries:

spx.commons.matrix.off_diag_upper_tri_matrix(A)

ans =

 0 1 6
 0 0 7
 0 0 0

spx.commons.matrix.off_diag_upper_tri_elements returns the
elements in the off diagonal part of the upper
triangular part of a matrix arranged in column major
order:

spx.commons.matrix.off_diag_upper_tri_elements(A)'

ans =

 1 6 7

spx.commons.matrix.nonzero_density returns the ratio
of total number of non-zero elements in a matrix
with the size of the matrix:

spx.commons.matrix.nonzero_density(A)
ans = 1

diagonally dominant matrices

Checking whether a matrix is diagonally dominant:

spx.commons.matrix.is_diagonally_dominant(A)

Making a matrix diagonally dominant:

A = spx.commons.matrix.make_diagonally_dominant(A)

Both these functions have an extra parameter
named strict. When set to true, strict
diagonal dominance is considered / enforced.

Norms and distances

Distance measurement utilities

Let X be a matrix. Treat each column of X
as a signal.

Euclidean distance between each signal pair can be computed by:

spx.commons.distance.pairwise_distances(X)

If X contains N signals, then the result
is an N x N matrix whose (i, j)-th entry
contains the distance between i-th and j-th
signal. Naturally, the diagonal elements are all
zero.

An additional second argument can be
provided to specify the distance measure
to be used. See the documentation of
MATLAB pdist function for supported
distance functions.

For example, for measuring city-block
distance between each pair of signals, use:

spx.commons.distance.pairwise_distances(X, 'cityblock')

Following dedicated functions are faster.

Squared \(\ell_2\) distances between all pairs
of columns of X:

spx.commons.distance.sqrd_l2_distances_cw(X)

Squared \(\ell_2\) distances between all pairs
of rows of X:

spx.commons.distance.sqrd_l2_distances_rw(X)

Norm utilities

These functions help in computing norm or
normalizing signals in a signal matrix.

Compute \(\ell_1\) norm of each column vector:

spx.norm.norms_l1_cw(X)

Compute \(\ell_2\) norm of each column vector:

spx.norm.norms_l2_cw(X)

Compute \(\ell_{\infty}\) norm of each column vector:

spx.norm.norms_linf_cw(X)

Normalize each column vector w.r.t. \(\ell_1\) norm:

spx.norm.normalize_l1(X)

Normalize each column vector w.r.t. \(\ell_2\) norm:

spx.norm.normalize_l2(X)

Normalize each row vector w.r.t. \(\ell_2\) norm:

spx.norm.normalize_l2_rw(X)

Normalize each column vector w.r.t. \(\ell_{\infty}\) norm:

spx.norm.normalize_linf(X)

Scale each column vector by a separate factor:

spx.norm.scale_columns(X, factors)

Scale each row vector by a separate factor:

spx.norm.scale_rows(X, factors)

Compute the inner product of each column vector in A
with each column vector in B:

spx.norm.inner_product_cw(A, B)

Sparse signals

Working with signal support

Let’s create a sparse vector:

>> x = [0 0 0 1 0 0 -1 0 0 -2 0 0 -3 0 0 7 0 0 4 0 0 -6];

Sparse support for a vector:

>> spx.commons.sparse.support(x)
4 7 10 13 16 19 22

\(\ell_0\) “norm” of a vector:

>> spx.commons.sparse.l0norm(x)
7

Let us create one more signal:

>> y = [3 0 0 0 0 0 0 0 0 4 0 0 -6 0 0 -5 0 0 -4 0 8 0];
>> spx.commons.sparse.l0norm(y)
6
>> spx.commons.sparse.support(y)
1 10 13 16 19 21

Support intersection ratio:

>> spx.commons.sparse.support_intersection_ratio(x, y)
0.1364

It is the ratio between the size of common indices
in the supports of x and y and maximum of the
sizes of supports of x and y.

Average support similarity of a reference
signal with a set of signals X (each signal
as a column vector):

spx.commons.sparse.support_similarity(X, reference)

Support similarities between two sets of signals (pairwise):

spx.commons.sparse.support_similarities(X, Y)

Support detection ratios

spx.commons.sparse.support_detection_rate(X, trueSupport)

K largest indices over a set of vectors:

spx.commons.sparse.dominant_support_merged(data, K)

Sometimes it’s useful to identify and arrange the non-zero
entries in a signal in descending order of their magnitude:

>> spx.commons.sparse.sorted_non_zero_elements(x)
16 22 19 13 10 4 7
 7 -6 4 -3 -2 1 -1

Given a signal x, the function spx.commons.sparse.sorted_non_zero_elements
returns a two row matrix where the first row contains the locations
of non-zero elements sorted by their magnitude and second row
contains their magnitude. If the magnitude of two non-zero elements
is same, then the original order is maintained. The sorting is stable.

Comparing signals

Comparing sparse or approximately sparse signals

spx.commons.SparseSignalsComparison class provides a number of
methods to compare two sets of sparse signals. It is
typically used to compare a set of original sparse signals
with corresponding recovered sparse signals.

Let us create two signals of size (N=256)
with sparsity level (K=4) with the
non-zero entries having magnitude chosen
uniformly between [1,2]:

N = 256;
K = 4;
% Constructing a sparse vector
% Choosing the support randomly
Omega = randperm(N, K);
% Number of signals
S = 2;
% Original signals
X = zeros(N, S);
% Choosing non-zero values uniformly between (-b, -a) and (a, b)
a = 1;
b = 2;
% unsigned magnitudes of non-zero entries
XM = a + (b-a).*rand(K, S);
% Generate sign for non-zero entries randomly
sgn = sign(randn(K, S));
% Combine sign and magnitude
XMS = sgn .* XM;
% Place at the right non-zero locations
X(Omega, :) = XMS;

Let us create a noisy version of these
signals with noise only in the non-zero
entries at 15 dB of SNR:

% Creating noise using helper function
SNR = 15;
Noise = spx.data.noise.Basic.createNoise(XMS, SNR);
Y = X;
Y(Omega, :) = Y(Omega, :) + Noise;

Let us create an instance of sparse signal comparison class:

cs = spx.commons.SparseSignalsComparison(X, Y, K);

Norms of difference signals [X - Y]:

cs.difference_norms()

Norms of original signals [X]:

cs.reference_norms()

Norms of estimated signals [Y]:

cs.estimate_norms()

Ratios between signal error norms and original signal norms:

cs.error_to_signal_norms()

SNR for each signal:

cs.signal_to_noise_ratios()

In case the signals X and Y were not
truly sparse, then spx.commons.SignalsComparison
has the ability to sparsify them
by choosing the K largest (magnitude)
entries for each signal in reference signal
set and estimated signal set. K
is an input parameter taken by the class.

We can access the sparsified reference signals:

cs.sparse_references()

We can access the sparsified estimated signals:

cs.sparse_estimates()

We can also examine the support index set
for each sparsified reference signal:

cs.reference_sparse_supports()

Ditto for the supports of sparsified estimated signals:

cs.estimate_sparse_supports()

We can measure the support similarity ratio
for each signal

cs.support_similarity_ratios()

We can find out which of the signals have
a support similarity above a specified threshold:

cs.has_matching_supports(1.0)

Overall analysis can be easily summarized
and printed for each signal:

cs.summarize()

Here is the output

Signal dimension: 256
Number of signals: 2
Combined reference norm: 4.56207362
Combined estimate norm: 4.80070407
Combined difference norm: 0.81126416
Combined SNR: 15.0000 dB
Specified sparsity level: 4

Signal: 1
 Reference norm: 2.81008750
 Estimate norm: 2.91691022
 Error norm: 0.49971207
 SNR: 15.0000 dB
 Support similarity ratio: 1.00

Signal: 2
 Reference norm: 3.59387311
 Estimate norm: 3.81292464
 Error norm: 0.63909106
 SNR: 15.0000 dB
 Support similarity ratio: 1.00

Signal space comparison

For comparing signals which are not sparse,
we have another helper utility class spx.commons.SignalsComparison.

Assuming X is a signal matrix (with each column treated
as a signal), and Y is its noisy version,
we created the signal comparison instance as:

cs = spx.commons.SignalsComparison(X, Y);

Most functions are similar to what we had for
spx.commons.SparseSignalsComparison:

cs.difference_norms()
cs.reference_norms()
cs.estimate_norms()
cs.error_to_signal_norms()
cs.signal_to_noise_ratios()
cs.summarize()

Working with Numbers

Some algorithms from number theory are useful
at times.

Finding integer factors closest to square root:

>> [a,b] = spx.discrete.number.integer_factors_close_to_sqr_root(120)
a = 10
b = 12

Printing utilities

Sparse signals

Printing a sparse signal as pairs of
locations and values:

>> x = [0 0 0 1 0 0 -1 0 0 -2 0 0 -3 0 0 7 0 0 4 0 0 -6];
>> spx.io.print.sparse_signal(x)
(4,1) (7,-1) (10,-2) (13,-3) (16,7) (19,4) (22,-6) N=22, K=7

Printing the non-zero entries in a signal
in descending order of magnitude with
location and value:

>> spx.io.print.sorted_sparse_signal(x)
Index: Value
 16: 7.000000
 22: -6.000000
 19: 4.000000
 13: -3.000000
 10: -2.000000
 4: 1.000000
 7: -1.000000

Latex

Printing a vector in a format suitable for Latex:

>> spx.io.latex.printVector([1, 2, 3, 4])
\begin{pmatrix}
1 & 2 & 3 & 4
\end{pmatrix}

Printing a matrix in a format suitable for Latex:

>> spx.io.latex.printMatrix(randn(3, 4))
\begin{bmatrix}
-0.340285 & 1.13915 & 0.65748 & 0.0187744\\
-0.925848 & 0.427361 & 0.584246 & -0.425961\\
0.00532169 & 0.181032 & -1.61645 & -2.03403
\end{bmatrix}

Printing a vector as a set in Latex:

>> spx.io.latex.printSet([1, 2, 3, 4])
\{ 1 , 2 , 3 , 4 \}

SciRust

SciRust is a related scientific computing
library developed by us. Some helper
functions have been written to
convert MATLAB data into SciRust compatible
Rust source code.

Printing a matrix for consumption in SciRust
source code:

>> spx.io.scirust.printMatrix(magic(3))
matrix_rw_f64(3, 3, [
 8.0, 1.0, 6.0,
 3.0, 5.0, 7.0,
 4.0, 9.0, 2.0
]);

Sparse recovery

Estimate for the required number of measurements for sparse signals
in N and sparsity level K based on paper by Donoho and Tanner:

M = spx.commons.sparse.phase_transition_estimate_m(N, K);

Example:

>> spx.commons.sparse.phase_transition_estimate_m(1000, 4)
60

Synthetic Signals

Some easy to setup recovery problems

General approach:

m = 64;
n = 121;
k = 4;
dict = spx.dict.simple.gaussian_dict(m, n);
gen = spx.data.synthetic.SparseSignalGenerator(n, k);
% create a sparse vector
rep = gen.biGaussian();
signal = dict*rep;
problem.dictionary = dict;
problem.representation_vector = rep;
problem.sparsity_level = k;
problem.signal_vector = signal;

The problems:

problem = spx.data.synthetic.recovery_problems.problem_small_1()
problem = spx.data.synthetic.recovery_problems.problem_large_1()
problem = spx.data.synthetic.recovery_problems.problem_barbara_blocks()

Sparse signal generation

Create generator:

N = 256; K = 4; S = 10;
gen = spx.data.synthetic.SparseSignalGenerator(N, K, S);

Uniform signals:

result = gen.uniform();
result = gen.uniform(1, 2);
result = gen.uniform(-1, 1);

Bi-uniform signals:

result = gen.biUniform();
result = gen.biUniform(1, 2);

Gaussian signals:

result = gen.gaussian();

BiGuassian signals:

result = gen.biGaussian();
result = gen.biGaussian(2.0);
result = gen.biGaussian(10.0, 1.0);

Compressible signal generation

We can use randcs function by Cevher, V.
for constructing compressible signals:

N = 100;
q = 1;
x = randcs(N, q);
plot(x);
plot(randcs(100, .9));
plot(randcs(100, .8));
plot(randcs(100, .7));
plot(randcs(100, .6));
plot(randcs(100, .5));
plot(randcs(100, .4));
lambda = 2;
x = randcs(N, q, lambda);
dist = 'logn';
x = randcs(N, q, lambda, dist);

Multi-subspace signal generation

Signals with disjoint supports:

% Dimension of representation space
N = 80;
% Number of subspaces
P = 8;
% Number of signals per subspace
SS = 10;
% Sparsity level of each signal (subspace dimension)
K = 4;
% Create signal generator
sg = spx.data.synthetic.MultiSubspaceSignalGenerator(N, K);
% Create disjoint supports
sg.createDisjointSupports(P);
sg.setNumSignalsPerSubspace(SS);
% Generate signal representations
sg.biUniform(1, 4);
% Access signal representations
X = sg.X;
% Corresponding supports
qs = sg.Supports;

Graphics and visualization

In this section we cover:

	Some utility classes which help
in specific visualization tasks

	Some external open source libraries / functions
which have been integrated in sparse-plex
to make visualization tasks easier

	Some general techniques for specific visualization
tasks

Create a full screen figure:

spx.graphics.figure.full_screen;

Multiple figures:

mf = spx.graphics.Figures();
mf.new_figure('fig 1');
mf.new_figure('fig 2');
mf.new_figure('fig 3');

All these figures will be created with same
width and height. They will be placed
one after another in a stacked manner.

Controlling size of multiple figures:

width = 1000;
height = 400;
mf = spx.graphics.Figures(width, height);

Display a Gram matrix for a given dictionary Phi:

spx.graphics.display.display_gram_matrix(Phi);

Canvas of a grid of images

Sometimes we wish to show a set of small
images in the form of a grid. These
images may be patches from a larger
image or may be small independent images
themselves.

spx.graphics.canvas helps in
combining the images in the form
of a grid on a canvas image.

We provide all the images to be
displayed in the form of a
matrix where each column consists
of one image.

Creating a canvas of image patches:

% Let us create some random images of size 50x50
width = 50;
height = 50;
rows = 10;
cols = 10;
images = 255* rand(width*height, rows*cols);
% Let's create a canvas of these images formed into a
% 10 x 10 grid.
canvas = spx.graphics.canvas.create_image_grid(images, rows, cols, ...
 height, width);
% Let's convert the canvas to UINT8 image
canvas = uint8(canvas);
% Let's show the image
imshow(canvas);
% Let's set the proper colormap.
colormap(gray);
% Axis sizing etc.
axis image;
axis off;

Displaying a set of signals in the form of a matrix

While working on joint signal recovery
problems, we need to visualize a set of
signals together. They can be put together
in a signal matrix where each column is
one (finite dimensional) signal. It
is straightforward to create a visualization
for these signals:

num_signals = 100;
signal_size = 80;
signal_matrix = randn(signal_size, num_signals);
% Let's create a canvas and put all the signals on it.
canvas = spx.graphics.canvas.create_signal_matrix_canvas(signal_matrix);
% Let's show the image
imshow(canvas);
% Let's set the proper colormap.
colormap(gray);
% Axis sizing etc.
axis image;
axis off;

Some third party open source libraries

Put a title over all subplots:

spx.graphics.suptitle(title);

This function is by Drea Thomas.

RGB code for given colorname:

c = spx.graphics.rgb('DarkRed')
c = spx.graphics.rgb('Green')
plot(x,y,'color',spx.graphics.rgb('orange'))

This function is by Kristján Jónasson and is
in public domain.

Supported colors:

%White colors
'FF','FF','FF', 'White'
'FF','FA','FA', 'Snow'
'F0','FF','F0', 'Honeydew'
'F5','FF','FA', 'MintCream'
'F0','FF','FF', 'Azure'
'F0','F8','FF', 'AliceBlue'
'F8','F8','FF', 'GhostWhite'
'F5','F5','F5', 'WhiteSmoke'
'FF','F5','EE', 'Seashell'
'F5','F5','DC', 'Beige'
'FD','F5','E6', 'OldLace'
'FF','FA','F0', 'FloralWhite'
'FF','FF','F0', 'Ivory'
'FA','EB','D7', 'AntiqueWhite'
'FA','F0','E6', 'Linen'
'FF','F0','F5', 'LavenderBlush'
'FF','E4','E1', 'MistyRose'
%Grey colors'
'80','80','80', 'Gray'
'DC','DC','DC', 'Gainsboro'
'D3','D3','D3', 'LightGray'
'C0','C0','C0', 'Silver'
'A9','A9','A9', 'DarkGray'
'69','69','69', 'DimGray'
'77','88','99', 'LightSlateGray'
'70','80','90', 'SlateGray'
'2F','4F','4F', 'DarkSlateGray'
'00','00','00', 'Black'
%Red colors
'FF','00','00', 'Red'
'FF','A0','7A', 'LightSalmon'
'FA','80','72', 'Salmon'
'E9','96','7A', 'DarkSalmon'
'F0','80','80', 'LightCoral'
'CD','5C','5C', 'IndianRed'
'DC','14','3C', 'Crimson'
'B2','22','22', 'FireBrick'
'8B','00','00', 'DarkRed'
%Pink colors
'FF','C0','CB', 'Pink'
'FF','B6','C1', 'LightPink'
'FF','69','B4', 'HotPink'
'FF','14','93', 'DeepPink'
'DB','70','93', 'PaleVioletRed'
'C7','15','85', 'MediumVioletRed'
%Orange colors
'FF','A5','00', 'Orange'
'FF','8C','00', 'DarkOrange'
'FF','7F','50', 'Coral'
'FF','63','47', 'Tomato'
'FF','45','00', 'OrangeRed'
%Yellow colors
'FF','FF','00', 'Yellow'
'FF','FF','E0', 'LightYellow'
'FF','FA','CD', 'LemonChiffon'
'FA','FA','D2', 'LightGoldenrodYellow'
'FF','EF','D5', 'PapayaWhip'
'FF','E4','B5', 'Moccasin'
'FF','DA','B9', 'PeachPuff'
'EE','E8','AA', 'PaleGoldenrod'
'F0','E6','8C', 'Khaki'
'BD','B7','6B', 'DarkKhaki'
'FF','D7','00', 'Gold'
%Brown colors
'A5','2A','2A', 'Brown'
'FF','F8','DC', 'Cornsilk'
'FF','EB','CD', 'BlanchedAlmond'
'FF','E4','C4', 'Bisque'
'FF','DE','AD', 'NavajoWhite'
'F5','DE','B3', 'Wheat'
'DE','B8','87', 'BurlyWood'
'D2','B4','8C', 'Tan'
'BC','8F','8F', 'RosyBrown'
'F4','A4','60', 'SandyBrown'
'DA','A5','20', 'Goldenrod'
'B8','86','0B', 'DarkGoldenrod'
'CD','85','3F', 'Peru'
'D2','69','1E', 'Chocolate'
'8B','45','13', 'SaddleBrown'
'A0','52','2D', 'Sienna'
'80','00','00', 'Maroon'
%Green colors
'00','80','00', 'Green'
'98','FB','98', 'PaleGreen'
'90','EE','90', 'LightGreen'
'9A','CD','32', 'YellowGreen'
'AD','FF','2F', 'GreenYellow'
'7F','FF','00', 'Chartreuse'
'7C','FC','00', 'LawnGreen'
'00','FF','00', 'Lime'
'32','CD','32', 'LimeGreen'
'00','FA','9A', 'MediumSpringGreen'
'00','FF','7F', 'SpringGreen'
'66','CD','AA', 'MediumAquamarine'
'7F','FF','D4', 'Aquamarine'
'20','B2','AA', 'LightSeaGreen'
'3C','B3','71', 'MediumSeaGreen'
'2E','8B','57', 'SeaGreen'
'8F','BC','8F', 'DarkSeaGreen'
'22','8B','22', 'ForestGreen'
'00','64','00', 'DarkGreen'
'6B','8E','23', 'OliveDrab'
'80','80','00', 'Olive'
'55','6B','2F', 'DarkOliveGreen'
'00','80','80', 'Teal'
%Blue colors
'00','00','FF', 'Blue'
'AD','D8','E6', 'LightBlue'
'B0','E0','E6', 'PowderBlue'
'AF','EE','EE', 'PaleTurquoise'
'40','E0','D0', 'Turquoise'
'48','D1','CC', 'MediumTurquoise'
'00','CE','D1', 'DarkTurquoise'
'E0','FF','FF', 'LightCyan'
'00','FF','FF', 'Cyan'
'00','FF','FF', 'Aqua'
'00','8B','8B', 'DarkCyan'
'5F','9E','A0', 'CadetBlue'
'B0','C4','DE', 'LightSteelBlue'
'46','82','B4', 'SteelBlue'
'87','CE','FA', 'LightSkyBlue'
'87','CE','EB', 'SkyBlue'
'00','BF','FF', 'DeepSkyBlue'
'1E','90','FF', 'DodgerBlue'
'64','95','ED', 'CornflowerBlue'
'41','69','E1', 'RoyalBlue'
'00','00','CD', 'MediumBlue'
'00','00','8B', 'DarkBlue'
'00','00','80', 'Navy'
'19','19','70', 'MidnightBlue'
%Purple colors
'80','00','80', 'Purple'
'E6','E6','FA', 'Lavender'
'D8','BF','D8', 'Thistle'
'DD','A0','DD', 'Plum'
'EE','82','EE', 'Violet'
'DA','70','D6', 'Orchid'
'FF','00','FF', 'Fuchsia'
'FF','00','FF', 'Magenta'
'BA','55','D3', 'MediumOrchid'
'93','70','DB', 'MediumPurple'
'99','66','CC', 'Amethyst'
'8A','2B','E2', 'BlueViolet'
'94','00','D3', 'DarkViolet'
'99','32','CC', 'DarkOrchid'
'8B','00','8B', 'DarkMagenta'
'6A','5A','CD', 'SlateBlue'
'48','3D','8B', 'DarkSlateBlue'
'7B','68','EE', 'MediumSlateBlue'
'4B','00','82', 'Indigo'
%Gray repeated with spelling grey
'80','80','80', 'Grey'
'D3','D3','D3', 'LightGrey'
'A9','A9','A9', 'DarkGrey'
'69','69','69', 'DimGrey'
'77','88','99', 'LightSlateGrey'
'70','80','90', 'SlateGrey'
'2F','4F','4F', 'DarkSlateGrey'

Dictionaries

Basic Dictionaries

Some simple dictionaries can be constructed
using library functions.

The dictionaries are available in
two flavors:

	As simple matrices

	As objects which implement the spx.dict.Operator abstraction defined below.

The functions returning the dictionary
as a simple matrix have a suffix “mtx”.
The functions returning the dictionary
as a spx.dict.Operator have the suffix
“dict” at the end.

These functions can also be used
to construct random sensing matrices
which are essentially random
dictionaries.

Dirac Fourier Dictionary

spx.dict.simple.dirac_fourier_dict(N)

Dirac DCT Dictionary:

spx.dict.simple.dirac_dct_dict(N)

Gaussian Dictionary:

spx.dict.simple.gaussian_dict(N, D, normalized_columns)

Rademacher Dictionary:

Phi = spx.dict.simple.rademacher_dict(N, D);

Partial Fourier Dictionary:

Phi = spx.dict.simple.partial_fourier_dict(N, D);

Over complete 1-D DCT dictionary:

spx.dict.simple.overcomplete1DDCT(N, D)

Over complete 2-D DCT dictionary:

spx.dict.simple.overcomplete2DDCT(N, D)

Dictionaries from SPIE2011 paper:

spx.dict.simple.spie_2011(name) % ahoc, orth, rand, sine

Sensing matrices

Gaussian sensing matrix:

Phi = spx.dict.simple.gaussian_mtx(M, N);

Rademacher sensing matrix:

Phi = spx.dict.simple.rademacher_mtx(M, N);

Partial Fourier matrix:

Phi = spx.dict.simple.partial_fourier_mtx(M, N);

Operators

In simple terms, a (finite) dictionary is
implemented as a matrix whose columns are
atoms of the dictionary. This approach
is not powerful enough. A dictionary
\(\Phi\)
usually acts on a sparse representation
\(\alpha\) to obtain a signal
\(x = \Phi \alpha\). During
sparse recovery, the Hermitian transpose
of the dictionary acts on the signal
[or residual] to compute \(\Phi^H x\)
or \(\Phi^H r\). Thus, the fundamental
operations are multiplication by \(\Phi\)
and \(\Phi^H\). While, these operations
can be directly implemented by using
a matrix representation of a dictionary,
they are slow and require a large storage
for the dictionary. For random dictionaries,
this is the only option. But for structured
dictionaries and sensing matrices, the
whole of dictionary need not be held in memory.
The multiplication by \(\Phi\)
and \(\Phi^H\) can be implemented using
fast functions.

Also multiple dictionaries can be combined
to construct a composite dictionary, e.g. \(\Phi \Psi\).

In order to take care of these scenarios,
we define the notion of a generic operator
in an abstract class spx.dict.Operator.
All operators support following methods.

Constructing a matrix representation of the operator:

op.double()

Computing \(\Phi x\):

op.mtimes(x)

The transpose operator:

op.transpose()

By default it is constructed by computing the
matrix representation of the transpose of the
operator. But specialized dictionaries can
implement it smartly.

The Hermitian transpose operator:

op.ctranspose()

By default it is constructed by computing the
matrix representation of the Hermitian transpose of the
operator. But specialized dictionaries can
implement it smartly.

Obtaining specific columns from the operator:

op.columns(columns)

Note that this doesn’t require computing the complete
matrix representation of the operator.

op.apply_columns(vectors, columns)

Constructing an operator which uses only the specified columns from
this dictionary:

op.columns_operator(columns)

A specific column of the dictionary:

op.column(index)

Printing the contents of the dictionary:

disp(op)

Matrix operators

Matrix operators are constructed by
wrapping a given matrix into spx.dict.MatrixOperator
which is a subclass of spx.dict.Operator.

Constructing the matrix operator from a matrix A:

op = spx.dict.MatrixOperator(A)

The matrix operator holds references to the matrix
as well as its Hermitian transpose:

op.A
op.AH

Composite Operators

A composite operator can be created by combining
two or more operators:

co = spx.dict.CompositeOperator(f, g)

Unitary/Orthogonal matrices

spx.dict.unitary.uniform_normal_qr(n)
spx.dict.unitary.analyze_rr(O)
spx.dict.unitary.synthesize_rr(rotations, reflections)
spx.dict.unitary.givens_rot(a, b)

Dictionary Properties

dp = spx.dict.Properties(Dict)

dp.gram_matrix()
dp.abs_gram_matrix()
dp.frame_operator()
dp.singular_values()
dp.gram_eigen_values()
dp.lower_frame_bound()
dp.upper_frame_bound()
dp.coherence()

Coherence of a dictionary:

mu = spx.dict.coherence(dict)

Babel function of a dictionary:

mu = spx.dict.babel(dict)

Spark of a dictionary (for small sizes):

[K, columns] = spx.dict.spark(Phi)

Equiangular Tight Frames

spx.dict.etf.ss_to_etf(M)
spx.dict.etf.is_etf(F)
spx.dict.etf.ss_etf_structure(k, v)

Grassmannian Frames

spx.dict.grassmannian.minimum_coherence(m, n)
spx.dict.grassmannian.n_upper_bound(m)
spx.dict.grassmannian.min_coherence_max_n(ms)
spx.dict.grassmannian.max_n_for_coherence(m, mu)
spx.dict.grassmannian.alternate_projections(dict, options)

Vector Spaces

Our work is focused on finite dimensional
vector spaces \(\mathbb{R}^N\) or \(\mathbb{C}^N\).
We represent a vector space by a basis
in the vector space. In this section,
we describe several useful functions
for working with one or more vector spaces
(represented by one basis per vector space).

Basis for intersection of two subspaces:

result = spx.la.spaces.insersection_space(A, B)

Orthogonal complement of A in B:

result = spx.la.spaces.orth_complement(A, B)

Principal angles between subspaces spanned by A and B:

result = spx.la.spaces.principal_angles_cos(A, B);
result = spx.la.spaces.principal_angles_radian(A, B);
result = spx.la.spaces.principal_angles_degree(A, B);

Smallest principal angle between subspaces spanned by A and B:

result = spx.la.spaces.smallest_angle_cos(A, B);
result = spx.la.spaces.smallest_angle_rad(A, B);
result = spx.la.spaces.smallest_angle_deg(A, B);

Principal angle between two orthogonal bases:

result = spx.la.spaces.principal_angles_orth_cos(A, B)
result = spx.la.spaces.smallest_angle_orth_cos(A, B);

Smallest angles between subspaces:

result = spx.la.spaces.smallest_angles_cos(subspaces, d)
result = spx.la.spaces.smallest_angles_rad(subspaces, d)
result = spx.la.spaces.smallest_angles_deg(subspaces, d)

Distance between subspaces based on Grassmannian space:

result = spx.la.spaces.subspace_distance(A, B)

This is computed as the operator norm of the difference between projection matrices for two subspaces.

Check if v in range of unitary matrix U:

result = spx.la.spaces.is_in_range_orth(v, U)

Check if v in range of A:

result = spx.la.spaces.is_in_range(v, A)

A basis for matrix A:

result = spx.la.spaces.find_basis(A)

Elementary matrices product and row reduced echelon form:

[E, R] = spx.la.spaces.elim(A)

Basis for null space of A:

result = spx.la.spaces.null_basis(A)

Bases for four fundamental spaces:

[col_space, null_space, row_space, left_null_space] = spx.la.spaces.four_bases(A)
[col_space, null_space, row_space, left_null_space] = spx.la.spaces.four_orth_bases(A)

Utility for constructing specific examples

Two spaces at a given angle:

[A, B] = spx.data.synthetic.subspaces.two_spaces_at_angle(N, theta)

Three spaces at a given angle:

[A, B, C] = spx.la.spaces.three_spaces_at_angle(N, theta)

Three disjoint spaces at a given angle:

[A, B, C] = spx.la.spaces.three_disjoint_spaces_at_angle(N, theta)

Map data from k dimensions to n dimensions:

result = spx.la.spaces.k_dim_to_n_dim(X, n, indices)

Describing relations between three spaces:

spx.la.spaces.describe_three_spaces(A, B, C);

Usage:

d = 4;
theta = 10;
n = 20;
[A, B, C] = spx.la.spaces.three_disjoint_spaces_at_angle(deg2rad(theta), d);
spx.la.spaces.describe_three_spaces(A, B, C);
% Put them together
X = [A B C];
% Put them to bigger dimension
X = spx.la.spaces.k_dim_to_n_dim(X, n);
% Perform a random orthonormal transformation
O = orth(randn(n));
X = O * X;

Combinatorics

Steiner Systems

Steiner system with block size 2:

v = 10;
m = spx.discrete.steiner_system.ss_2(v);

Steiner system with block size 3 (STS Steiner Triple System):

m = spx.discrete.steiner_system.ss_3(v);

Bose construction for STS system for v = 6n + 3

m = spx.discrete.steiner_system.ss_3_bose(v);

Verify if a given incidence matrix is a Steiner system:

spx.discrete.steiner_system.is_ss(M, k)

Latin square construction:

spx.discrete.steiner_system.commutative_idempotent_latin_square(n)

Verify if a table is a Latin square:

spx.discrete.steiner_system.is_latin_square(table)

Matrix factorization algorithms

Note

Better implementations for these algorithms may be available
in stock MATLAB distribution or other third party libraries.
These codes were developed for instructional purposes as
variations of these algorithms were needed in development
of other algorithms in this package.

Various versions of QR Factorization

Gram Schmidt:

[Q, R] = spx.la.qr.gram_schmidt(A)

Householder UR:

[U, R] = spx.la.qr.householder_ur(A)

Householder QR:

[Q, R] = spx.la.qr.householder_qr(A)

Householder matrix for a given vector:

[H, v] = spx.la.qr.householder_matrix(x)

External Code

almost equal:

isalmost(a,b,tol)

Timing

[t, measurement_overhead, measurement_details] = timeit(f, num_outputs)

Noise

Noise generation

Gaussian noise:

ng = spx.data.noise.Basic(N, S);
sigma = 1;
mean = 0;
ng.gaussian(sigma, mean);

Creating noise at a specific SNR:

% Sparse signal dimension
N = 100;
% Sparsity level
K = 20;
% Number of signals
S = 4;
% Create sparse signals
signals = spx.data.synthetic.SparseSignalGenerator(N, K, S).gaussian();
% Create noise at specific SNR level.
snrDb = 10;
noises = spx.data.noise.Basic.createNoise(signals, snrDb);
% add signal to noise
signals_with_noise = signals + noises;
% Verify SNR level
20 * log10 (spx.norm.norms_l2_cw(signals) ./ spx.norm.norms_l2_cw(noises))

Noise measurement

SNR in dB:

result = spx.commons.snr.SNR(signals, noises)

SNR in dB from signal and reconstruction:

reconstructions = signals_with_noise;
result = spx.commons.snr.recSNRdB(signals, reconstructions)

Signal energy in DB

result = spx.commons.snr.energyDB(signals)

Reconstruction SNR as energy ratio:

result = spx.commons.snr.recSNR(signal, reconstruction)

Error energy normalized by signal energy:

result = spx.commons.snr.normalizedErrorEnergy(signal, reconstruction)

Reconstruction SNRs over multiple signals in dB:

result = spx.commons.snr.recSNRsdB(signals, reconstructions)

Reconstruction SNRs over multiple signals as energy ratios:

result = spx.commons.snr.recSNRs(signals, reconstructions)

Signal energies:

result = spx.commons.snr.energies(signals)

Signal energies in dB:

result = spx.commons.snr.energiesDB(signals)

Exercises

The best way to learn is by doing exercises yourself.
In this section,
we present a set of computer exercises which help you learn
the fundamentals of sparse representations: algorithms and applications.

Most of these exercises are implemented in some form or
other as part of the sparse-plex library.
Once you have written your own implementations, you may
hunt the code in library and compare your implementation
with the reference implementation.

The exercises are described in terms of MATLAB
programming environment. But they can be easily
developed in other programming environments too.

Throughout these exercises, we will develop a set of functions
which are reusable for performing various tasks related to
sparse representation problems. We suggest you to collect
such functions developed by you in one place together so that
you can implement the more sophisticated exercises easily later.

Creating a sparse signal

The first aspect is deciding the support for the
sparse signal.

	Decide on the length of signal N=1024.

	Decide on the sparsity level K=10.

	Choose K entries from 1..N randomly as your choice of sparse support. You can use randperm function.

Now, we need to consider the values of non-zero entries
in the sparse vector. Typically, they
are chosen from a random distribution.
Few of the common choices are:

	Gaussian

	Uniform

	Bi-uniform

Gaussian

	Generate K Gaussian random numbers with zero
mean and unit standard deviation. You can
use randn function. You may choose to
change the standard deviation, but mean should
usually be zero.

	Create a column vector with N zeros.

	On the entries indexed by the sparse support set,
place the K numbers generated above.

Plotting

	Use stem command to visualize the sparse signal.

Uniform

	Most of the steps are similar to creating a
Gaussian sparse vector.

	The rand function generates a number uniformly between
0 and 1.

	In order to generate a number uniformly between a and b,
we can use the simple trick of a + (b -a) * rand

	Choose a and b (say -4 and 4).

	Generate K uniformly distributed numbers between a and b.

	Place them in the N length vector as described above.

	Plot them.

Bi-uniform

A problem with Gaussian and uniform distributions
as described above is that they are prone to
generate some non-zero entries which are much
smaller compared to others.

Bi-uniform approach attempts to avoid this situation.
It generates numbers uniformly between [-b, -a]
and [a, b] where a and b are both positive numbers
with a < b.

	Choose a and by [say 1 and 2].

	Generate K uniformly distributed random numbers
between a and b (as discussed above). These
are the magnitudes of the sparse non-zero entries.

	Generate K Gaussian numbers and apply sign
function to them to map them to 1 and -1.
Note that with equal probability, the signs would
be 1 or -1.

	Multiply the signs and magnitudes to generate your
sparse non-zero entries.

	Place them in the N length vector as described above.

	Plot them.

Following image is an example of how a sparse vector looks.

[image: ../_images/k_sparse_biuniform_signal1.png]

Creating a two ortho basis

Simplest example of an overcomplete dictionary
is Dirac Fourier dictionary.

	You can use eye(N) to generate the standard
basis of \(\mathbb{C}^N\) which is
also known as Dirac basis.

	dftmtx(N) gives the matrix for forward
Fourier transform. Corresponding Fourier basis
can be constructed by taking its transpose.

	The columns / rows of dftmtx(N) are not
normalized. Hence, in order to construct an
orthonormal basis, we need to normalize the
columns too. This can be easily done by multiplying
with \(\frac{1}{\sqrt{N}}\).

	Choose the dimension of the ambient signal space
(say N=1024).

	Construct the Dirac basis for \(\mathbb{C}^N\).

	Construct the orthonormal Fourier basis for \(\mathbb{C}^N\).

	Combine the two to form the two ortho basis
(Dirac in left, Fourier in right).

Verification

We assume that the dictionary has been stored
in a variable named Phi. We will use the
mathematical symbol \(\Phi\) for the same.

	Verify that each column has unit norm.

	Verify that each row has a norm of \(\sqrt{2}\).

	Compute the Gram matrix \(\Phi' * \Phi\).

	Verify that the diagonal elements are all one.

	Divide the Gram matrix into four quadrants.

	Verify that the first and fourth quadrants are identity
matrices.

	Verify that the Gram matrix is symmetric.

	What can you say about the values in 2nd and 3rd quadrant?

Creating a Dirac-DCT two-ortho basis

While Dirac-DFT two ortho basis has the lowest possible
coherence amongst all pairs of orthogonal bases, it is
not restricted to \(\mathbb{R}^N\). A good starting
point is to consider constructing a Dirac-DCT two ortho
basis.

	Construct the Dirac-DCT two-ortho basis dictionary.

	Replace dftmtx(N) by dctmtx(N).

	Follow steps similar to previous exercise to construct a
Dirac-DCT dictionary.

	Notice the differences in the Gram matrix of Dirac-DFT dictionary
with Dirac-DCT dictionary.

	Construct the Dirac-DCT dictionary for different values of N=(8, 16, 32, 64, 128, 256).

	Look at the changes in the Gram matrix as you vary N for constructing Dirac-DCT dictionary.

An example Dirac-DCT dictionary has been illustrated in the figure below.

[image: ../_images/dirac_dct_2561.png]

Note

While constructing the two-ortho bases is nice for illustration, it
should be noted that using them directly for computing \(\Phi x\)
is not efficient. This entails full cost of a matrix vector multiplication.
An efficient implementation would consider following ideas:

	\(\Phi x = [I \Psi] x = I x_1 + \Psi x_2\) where \(x_1\)
and \(x_2\) are upper and lower halves of the vector \(x\).

	\(I x_1\) is nothing but x_1.

	\(\Psi x_2\) can be computed by using the efficient implementations
of (Inverse) DFT or DCT transforms with appropriate scaling.

	Such implementations would perform the multiplication with dictionary in
\(O(N \log N)\) time.

	In fact, if the second basis is a wavelet basis, then the multiplication can
be carried out in linear time too.

	You are suggested to take advantage of these ideas in following exercises.

Creating a signal which is a mixture of sinusoids and impulses

If we split the sparse vector \(x\) into two halves \(x_1\) and \(x_2\)
then:
* The first half corresponds to impulses from the Dirac basis.
* The second half corresponds to sinusoids from DCT or DFT basis.

It is straightforward to construct a signal which is a mixture of impulses and
sinusoids and has a sparse representation in Dirac-DFT or Dirac-DCT representation.

	Pick a suitable value of N (say 64).

	Construct the corresponding two ortho basis.

	Choose a sparsity pattern for the vector x (of size 2N) such that some
of the non-zero entries fall in first half while some in second half.

	Choose appropriate non-zero coefficients for x.

	Compute \(y = \Phi x\) to obtain a signal which is a mixture of impulses
and sinusoids.

Verification

	It is obvious that the signal is non-sparse in time domain.

	Plot the signal using stem function.

	Compute the DCT or DFT representation of the signal (by taking inverse transform).

	Plot the transform basis representation of the signal.

	Verify that the transform basis representation does indeed have some large spikes
(corresponding to the non-zero entries in second half of \(x\)) but the rest
of the representation is also full with (small) non-zero terms (corresponding to
the transform representation of impulses).

Creating a random dictionary

We consider constructing a Gaussian random matrix.

	Choose the number of measurements \(M\) say 128.

	Choose the signal space dimension \(N\) say 1024.

	Generate a Gaussian random matrix as \(\Phi = \text{randn(M, N)}\).

Normalization

There are two ways of normalizing the random matrix to a dictionary.

One view considers that all columns or atoms of a dictionary should be
of unit norm.

	Measure the norm of each column. You may be tempted to write a for loop
to do the same. While this is alright, but MATLAB is known for its
vectorization capabilities. Consider using a combination of sum
conj element wise multiplication and sqrt to come up with
a function which can measure the column wise norms of a matrix.
You may also explore bsxfun.

	Divide each column by its norm to construct a normalized dictionary.

	Verify that the columns of this dictionary are indeed unit norm.

An alternative way considers a probabilistic view.

	We say that each entry in the Gaussian random matrix should be zero mean
and variance \(\frac{1}{M}\).

	This ensures that on an average the mean of each column is indeed 1 though
actual norms of each column may differ.

	As the number of measurements increases, the likelihood of norm being close
to one increases further.

We can apply these ideas as follows.
Recall that randn generates Gaussian random variables with zero mean
and unit variance.

	Divide the whole random matrix by \(\frac{1}{\sqrt{M}}\) to achieve
the desired sensing matrix.

	Measure the norm of each column.

	Verify that the norms are indeed close to 1 (though not exactly).

	Vary M and N to see how norms vary.

	Use imagesc or imshow function to visualize the sensing matrix.

An example Gaussian sensing matrix is illustrated in figure below.

[image: ../_images/gaussian_matrix1.png]

Taking compressive measurements

	Choose a sparsity level (say K=10)

	Choose a sparse support over \(1 \dots N\) of size K randomly using
randperm function.

	Construct a sparse vector with bi uniform non-zero entries.

	Apply the Gaussian sensing matrix on to the sparse signal to compute
compressive measurement vector \(y = \Phi x \in \mathbb{R}^M\).

An example of compressive measurement vector is shown in figure below.

[image: ../_images/measurement_vector_biuniform1.png]
In the sequel we will refer to the computation of noiseless measurement vector
by the equation \(y = \Phi x\).

When we make measurement noisy, the equation would be \(y = \Phi x + e\).

Before we jump into sparse recovery, let us spend some time
studying some simple properties of dictionaries.

Measuring dictionary properties

Gram matrix

You have already done this before. The straight forward
calculation is \(G = \Phi' * \Phi\) where we are
considering the conjugate transpose of the dictionary \(\Phi\).

	Write a function to measure the Gram matrix of any dictionary.

	Compute the Gram matrix for all the dictionaries discussed above.

	Verify that Gram matrix is symmetric.

For most of our purposes, the sign or phase of entries in the Gram
matrix is not important. We may use the symbol G to refer to
the Gram matrix in the sequel.

	Compute absolute value Gram matrix abs(G).

Coherence

Recall that the coherence of a dictionary is largest (absolute value)
inner product between any pair of atoms.
Actually it’s quite easy to read the coherence from the absolute
value Gram matrix.

	We reject the diagonal elements since they correspond to the inner product
of an atom with itself. For a properly normalized dictionary, they should
be 1 anyway.

	Since the matrix is symmetric we need to look at only the upper triangular half
or the lower triangular half (excluding the diagonal) to read off the
coherence.

	Pick the largest value in the upper triangular half.

	Write a MATLAB function to compute the coherence.

	Compute coherence of a Dirac-DFT dictionary for different values of N.
Plot the same to see how coherence decreases with N.

	Do the same for Dirac-DCT.

	Compute the coherence of Gaussian dictionary (with say N=1024) for
different values of M and plot it.

	In the case of Gaussian dictionary, it is better to take average coherence
for same M and N over different instances of Gaussian dictionary of the
specified size.

Babel function

Babel function is quite interesting. While the definition looks pretty
scary, it turns out that it can be computed very easily from the Gram matrix.

	Compute the (absolute value) Gram matrix for a dictionary.

	Sort the rows of the Gram matrix (each row separately) in descending order.

	Remove the first column (consists of all ones in for a normalized dictionary).

	Construct a new matrix by accumulating over the columns of the
sorted Gram matrix above. In other words, in the new matrix

	First column is as it is.

	Second column consists of sum of first and second column of sorted matrix.

	Third column consists of sum of first to third column of sorted matrix .

	Continue accumulating like this.

	Compute the maximum for each column.

	Your Babel function is in front of you.

	Write a MATLAB function to carry out the same for any dictionary.

	Compute the Babel function for Dirac-DFT and Dirac-DCT dictionary
with (N=256).

	Compute the Babel function for Gaussian dictionary with N=256. Actually
compute Babel functions for many instances of Gaussian dictionary and
then compute the average Babel function.

Getting started with sparse recovery

Our first objective will be to develop algorithms for sparse recovery in noiseless case.

The defining equation is \(y = \Phi x\) where \(x\) is the sparse representation vector,
\(\Phi\) is the dictionary or sensing matrix
and \(y\) is the signal or measurement vector.
In any sparse recovery algorithm, following quantities are of core interest:

	\(x\) which is unknown to us.

	\(\Phi\) which is known to us. Sometimes we may know \(\Phi\) only approximately.

	\(y\) which is known to us.

	Given \(\Phi\) and \(y\), we estimate an approximation of \(x\) which we will
represent as \(\widehat{x}\).

	\(\widehat{x}\) is (typically) sparse even if \(x\) may be only approximately sparse or compressible.

	Given an estimate \(\widehat{x}\), we compute the residual \(r = y - \Phi \widehat{x}\). This
quantity is computed during the sparse recovery process.

	Measurement or signal error norm \(\| r \|_2\). We strive to reduce this as much as possible.

	Sparsity level \(K\). We try to come up with an \(\widehat{x}\) which is K-sparse.

	Representation error or recovery error \(f = x - \widehat{x}\). This is unknown to us. The recovery process
tends to minimize its norm \(\| f \|_2\) (if it is working correctly !).

Some notes are in order

	K may or may not be given to us. If K is given to us, we should use it in our recovery process.
If it is not given, then we should work with \(\| r \|_2\).

	While the recovery algorithm itself doesn’t know about \(x\) and hence cannot calculate \(f\),
a controlled testing environment can carefully choose and \(x\), compute \(y\) and pass
\(\Phi\) and \(y\) to the recovery algorithm. Thus, the testing environment can easily
compute \(f\) by using the \(x\) known to it and \(\widehat{x}\) given by the
recovery algorithm.

Usually the sparse recovery algorithms are iterative. In each iteration, we improve our
approximation \(\widehat{x}\) and reduce \(\| r \|_2\).

	We can denote the iteration counter by \(k\) starting from 0 onwards.

	We denote k-th approximation by \(\widehat{x}^k\) and k-th residual by \(r^k\).

	A typical initial estimate is given by \(\widehat{x}^0 = 0\) and thus, \(r^0 = y\).

Objectives of recovery algorithm

There are fundamentally two objectives of a sparse recovery algorithm

	Identification of locations at which \(\widehat{x}\) has
non-zero entries. This corresponds to the sparse support of \(x\).

	Estimation of the values of non-zero entries in \(\widehat{x}\).

We will use following notation.

	The identified support will be denoted as \(\Lambda\). It is
the responsibility of the sparse recovery algorithm to guess it.

	If the support is identified gradually in each iteration, we can
use the notation \(\Lambda^k\).

	The actual support of \(x\) will be denoted by \(\Omega\).
Since \(x\) is unknown to us hence \(\Omega\) is also
unknown to us within the sparse recovery algorithm. However,
the controlled testing environment would know about \(\Omega\).

If the support has been identified correctly, then estimation part
is quite easy. It’s nothing but the application of least squares
over the columns of \(\Phi\) selected by the support set.

Different recovery algorithms vary in how they approach
the support identification and coefficient estimations.

	Some algorithms try to identify whole support at once and then
estimate the values of non-zero entries.

	Some algorithms identify atoms in the support one at a time
and iteratively estimate the non-zero values for the current
support.

Simple support identification

	Write a function which sorts a given vector by the
decreasing order of magnitudes of its entries.

	Identify the K largest (magnitude) entries in the sorted vector
and their locations in the original vector.

	Collect the locations of K largest entries into a set

Note

[sorted_x, index_vector] = sort(x) in MATLAB returns
both the sorted entries and the index vector
such that sorted_x = x[index_vector]. Our interest
is usually in the index_vector as we don’t want
to really change the order of entries in x while
identifying the largest K entries.

In MATLAB a set can be represented using an array. You
have to be careful to ensure that such a set never have
any duplicate elements.

Sparse approximation of a given vector

Given a vector \(x\) which may not be sparse, its
K sparse approximation which is the best approximation
in \(l_p\) norm sense can be obtained by choosing
the K largest (in magnitude) entries.

	Write a MATLAB function to compute the K sparse representation of

any vector.

	Identify the K largest entries and put their locations
in the support set \(\Lambda\).

	Compute \(\Lambda^c = \{1 \dots N \} \setminus \Lambda\).

	Set the entries corresponding to \(\Lambda^c\) in \(x\) to zero.

The proxy vector

A very interesting quantity which appears in many sparse
recovery algorithms is the proxy vector \(p = \Phi' r\).

The figure below shows a sparse vector, its measurements and
corresponding proxy vector \(p^0 = \Phi r^0 =\Phi y\).

[image: ../_images/proxy_vector.png]
While the proxy vector may look quite chaotic on first look,
it is very interesting to note that it tends to have large
entries at exactly the same location as the sparse vector \(x\)
itself.

if we think about the proxy vector closely, we can notice that
each entry in the proxy is the inner product of an atom in \(\Phi\)
with the residual \(r\). Thus, each entry in proxy vector
indicates how similar an atom in the dictionary is with the residual.

	Choose M, N and K and construct a sparse vector \(x\)
with support \(\Omega\)
and Gaussian dictionary \(\Phi\).

	For the measurement vector \(y = \Phi x\), compute \(p = \Phi' y\).

	Identify the K largest entries in \(p\) and use their locations to
make a guess of support as \(\Lambda\).

	Compare the sets \(\Omega\) and \(\Lambda\). Measure the
support identification ratio as \(\frac{|\Lambda \cap \Omega|}{|\Omega|}\)
i.e. the ratio of the number of indices common in \(\Lambda\) and
\(\Omega\) with the number of indices in \(\Omega\) (which is K).

	Keep M and N fixed and vary K to see how support identification ratio changes.
For this, measure average support identification ratio for say 100 trials.
You may increase the number of trials if you want.

	Keep K=4, N=1024 and vary M from 10 to 500 to see how support identification
ratio changes. Again use the average value.

Note

The support identification ratio is a critical tool for evaluating the
quality of a sparse recovery algorithm. Recall that if the support has
been identified correctly, then reconstructing a sparse vector is a simple
least squares problem. If the support is identified partially, or some
of the indices are incorrect, then it can lead to large recovery errors.

If the support identification ratio is 1, then we have correctly identified
the support. Otherwise, we haven’t.

For noiseless recovery, if support is identified correctly, then representation
will be recovered correctly (unless \(\Phi\) is ill conditioned).
Thus, support identification ratio is a good measure of success or failure of
recovery. We don’t need to worry about SNR or norm of recovery error.

In the sequel, for noiseless recovery, we will say that recovery succeeds
if support identification ratio is 1.

If we run multiple trials of a recovery algorithm (for a specific configuration
of K, M, N etc.) with different data, then the recovery rate would be
the number of trials in which successful recovery happened divided by
the total number of trials.

The recovery rate (on reasonably high number of trials) would be our main
tool for measuring the quality of a recovery algorithm. Note that the
recovery rate depends on

	The representation space dimension \(N\).

	The number of measurements \(M\).

	The sparsity level \(K\).

	The choice of dictionary \(\Phi\).

It doesn’t really depend much on the choice of distribution for
the non-zero entries in \(x\) if the entries are i.i.d. Or
the dependence as such is not very significant.

Developing the hard thresholding algorithm

Based on the idea of the proxy vector, we can easily compute
a sparse approximation as follows.

	Identify the K largest entries in the proxy and their locations.

	Put the locations together in your guess for the support \(\Lambda\).

	Identify the columns of \(\Phi\) corresponding to \(\Lambda\)
and construct a submatrix \(\Phi_{\Lambda}\).

	Compute \(x_{\Lambda} = \Phi_{\Lambda}^{\dagger} y\) as the least squares solution
of the problem \(y = \Phi_{\Lambda} x_{\Lambda}\).

	Set the remaining entries in \(x\) corresponding to \(\Lambda^c\) as zeros.

Put together the algorithm described above in a MATLAB function
like x_hat = hard_thresholding(Phi, y, K).

	Think and explain why hard thresholding will always succeed if \(K=1\).

	Say \(N=256\) and \(K=2\). What is the required number of measurements
at which the recovery rate will be equal to 1.

Phase transition diagram

A nice visualization of the performance of a recovery algorithm
is via its phase transition diagram. The figure below shows the
phase transition diagram for orthogonal matching pursuit algorithm
with a Gaussian dictionary and Gaussian sparse vectors.

	N is fixed at 64.

	K is varied from 1 to 4.

	M is varied from 1 and 2 to 32 (N/2) with steps of 2.

	For each configuration of K and M, 1000 trials are conducted
and recovery rate is measured.

	In the phase transition diagram,
a white cell indicates that for the corresponding K and M, the algorithm
is able to recover successfully always.

	A black cell indicates that the algorithm never successfully recovers any
signal for the corresponding K and M.

	A gray cell indicates that the algorithm sometimes recovers successfully
while sometimes it may fail.

	Safe zone of operation is the white area in the diagram.

[image: ../_images/OMP_gaussian_dict_gaussian_data_phase_transition.png]
In the figure below, we capture the minimum required number of measurements
for different values of K for OMP algorithm running on Gaussian sensing matrix.

[image: ../_images/OMP_gaussian_dict_gaussian_data_k_vs_min_m.png]
It is evident that as K increases, the minimum M required for successful
recovery also increases.

	Generate the phase transition diagram for thresholding algorithm
with N = 256, K varying from 1 to 16 and M varying from 2 to 128
and a minimum of 100 trials for each configuration.

	Use the phase transition diagram data for estimating the minimum M
for different values of K and plot it.

Developing the matching pursuit algorithm

You can read the description of matching pursuit algorithms
on Wikipedia [https://en.wikipedia.org/wiki/Matching_pursuit].
This is a simpler algorithm than orthogonal matching pursuit.
It doesn’t involve any least squares step.

	Implement the matching pursuit (MP) algorithm in MATLAB.

	Generate the phase transition diagram for MP algorithm
with N = 256, K varying from 1 to 16 and M varying from 2 to 128
and a minimum of 100 trials for each configuration.

	Use the phase transition diagram data for estimating the minimum M
for different values of K and plot it.

Developing the orthogonal matching pursuit algorithm

The orthogonal matching pursuit algorithm is described in the
figure below.

[image: ../_images/omp_algorithm.png]

	Implement the orthogonal matching pursuit (OMP) algorithm in MATLAB.

	Generate the phase transition diagram for OMP algorithm
with N = 256, K varying from 1 to 16 and M varying from 2 to 128
and a minimum of 100 trials for each configuration.

	Use the phase transition diagram data for estimating the minimum M
for different values of K and plot it.

Sparsifying an image

Scripts

Preamble

close all; clear all; clc;

Resetting random numbers:

rng('default');

Export management flag:

export = true;

Figures

Exporting figures:

if export
export_fig images\figure_name.png -r120 -nocrop;
export_fig images\figure_name.pdf;
end

Typical steps in figures:

xlabel('Principal angle (degrees)');
ylabel('Number of subspace pairs');
title('Distribution of principal angles over subspace pairs in signal space');
grid on;

Index

Data Sets

Yale Faces Database

Loading the faces:

yf = spx.data.image.YaleFaces();
yf.load();

Number of subjects:

ns = yf.num_subjects();

Images to load per subject:

ni = yf.ImagesToLoadPerSubject;

Images of a particular subject:

Y = yf.get_subject_images(i);

Resized images of a particular subject:

Y = yf.get_subject_images_resized(i)

Total images:

yf.num_total_images()

Size of image in pixels:

yf.image_size()

Image by global index across all subjects:

yf.get_image_by_glob_idx(index)

Resize all images in buffer:

yf.resize_all(width, height)
yf.resize_all(42, 48);

Describe the contents of the database:

yf.describe()

Create a canvas of images randomly chosen from all subjects:

canvas = yf.create_random_canvas();
imshow(canvas);
colormap(gray);
axis image;
axis off;

Creating a canvas for a particular subject:

yf.resize_all(42, 48);
canvas = yf.create_subject_canvas(1);
imshow(canvas);
colormap(gray);
axis image;
axis off;

Pick ten random images from each subject:

images = yf.training_set_a()

Binary Hypothesis Testing

Generate a sequence of bits:

% Number of bits being transmitted
B = 1000*100;
transmittedBits = randi(2, B , 1) - 1;

Modulation:

% Number of samples per detection test.
N = 10;
% The signal shape
signal = ones(N, 1);
transmittedSequence = SPX_Modulator.modulate_bits_with_signals(transmittedBits, signal);

Adding noise:

sigma = 1;
noise = sigma * randn(size(transmittedSequence));
% We add noise to transmitted data to create received sequence
receivedSequence = transmittedSequence + noise;

Matched filtering:

matchedFilterOutput = SPX_MatchedFilter.filter(receivedSequence, signal);

Generating sufficient statistics:

signalNormSquared = signal' * signal;
sufficientStatistics = matchedFilterOutput / signalNormSquared;

Thresholding:

% We define optimal detection threshold
eta = 0.5;
% We create the received bits
receivedBits = sufficientStatistics >= eta;

Detection results:

result = SPX_BinaryHypothesisTest.performance(...
 transmittedBits, receivedBits)

% Number of False sent, False received
result.FF
% Number of False sent, True received
result.FT
% Number of True sent, False received
result.TF
% Number of True sent, True received
result.TT
% Number of times hypothesis 0 was sent.
result.H0
% Number of times hypothesis 1 was sent.
result.H1
% Number of times 0 was detected.
result.D0
% Number of times 1 was detected.
result.D1
% A priori probability of 0
result.P0
% A priori probability of 1
result.P1
% Detection probability
result.PD
% False alarm probability
result.PF
% Miss probability
result.PM
% Accuracy (probability of correct decisions)
result.Accuracy
% Probability of error
result.Pe
% Precision : Truth sent given that truth was detected
result.Precision
% Recall : Truth detected given that truth was sent.
result.Recall
% F1 score
result.F1

Clustering

K-means Clustering

Spectral Clustering

Sparse Subspace Clustering

Sparse Representation Clustering

SSC-OMP

Dictionary Learning

Utilities

Measuring coherence and finding corresponding atoms:

[mu, i, j, absG] = CS_DICTUtil.coherence(A)

Estimating the ratio of atoms matching between original and learned Dictionary:

result = spx.dict.comparison.matching_atoms_ratio(original, new)

Plotting the contents of a dictionary:

CS_DICTUtil.plotDictionary(dict);

 _images/OMP_gaussian_dict_gaussian_data_k_vs_min_m.png
Minimum number of measurements

35,

Minimum measurements required for different sparsity levels

15

i
2 25 3 35 4
Sparsity level: K

_static/comment-close.png

_images/cs_matching_pursuit_solution.png
Value

Value

1.5

05

-05

Matching pursuit solution

15 . . .

0 100 150 200 250 300

Index
Matching pursuit recovery error
04 T T T
02 E
0
02 E
04]
06 . . . ,
100 150 200 250 300

Index

_static/comment.png

_images/cs_orthogonal_matching_pursuit_solution.png
Value

0.06
0.04
0.02

-0.02
-0.04

-0.06

-0.08
0

Orthogonal Matching pursuit solution

150
Index

L L
200 250

Orthogonal Matching pursuit recovery error

150
Index

L L
200 250

300

_images/OMP_gaussian_dict_gaussian_data_phase_transition.png
Phase Transition Diagram for OMP:

K (sparsity level)

M (measurements)

09

08

07

06

05

04

03

02

01

_static/comment-bright.png

_images/cs_l_1_minimization_solution.png
151

05

> 0

Value

-05F

-15
0

0.2

0151
01r
005+

-0.05
01+

-0.15
o)

L L
50 100

L
150
Index

L
200

I‘ minimization recovery error

L
250

AR k |

]

T

e

L
200

L
250

300

_static/file.png

_static/down-pressed.png

_images/dct_256.png
50

100

150

200

250

50

100

150

200

250

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

_static/down.png

_images/dirac_dct_256.png
50

100

150

200

250

300

350

400

450

500

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_images/dirac_dct_omp_solution.png
Value

Orthogonal Matching pursuit solution

15 T T T T T
. d
05+ | 1
[
-0.5- b
4 L . . I I
[100 200 300 400 500 600
Index
x10™° Orthogonal Matching pursuit recovery error
3 T T T T
ol 4
g
g 1
[T T
A L I I 1 1
0 100 200 300 400 500 600

Index

_images/gaussian_matrix.png
150

200

250

0.4
02

-02

0.4

nav.xhtml

 Table of Contents

 		
 Sparse-plex Library Documentation

 		
 Introduction

 		
 Getting Started

 		
 Requirements

 		
 Installation

 		
 Getting acquainted

 		
 Running examples

 		
 Checking the source code

 		
 Verifying the installation

 		
 Configuring test data directories

 		
 Building documentation

 		
 Demos

 		
 Dirac DCT Tutorial

 		
 Basic CS Tutorial

 		
 Library Classes

 		
 Sparse recovery pursuit algorithms

 		
 Matching pursuit

 		
 Orthogonal matching pursuit

 		
 Basis pursuit and its variations

 		
 Compressive sampling matching pursuit

 		
 Joint recovery algorithms

 		
 Introduction

 		
 Common utilities

 		
 Signals

 		
 Working with matrices

 		
 Norms and distances

 		
 Sparse signals

 		
 Comparing signals

 		
 Working with Numbers

 		
 Printing utilities

 		
 Sparse recovery

 		
 Synthetic Signals

 		
 Some easy to setup recovery problems

 		
 Sparse signal generation

 		
 Compressible signal generation

 		
 Multi-subspace signal generation

 		
 Graphics and visualization

 		
 Canvas of a grid of images

 		
 Displaying a set of signals in the form of a matrix

 		
 Some third party open source libraries

 		
 Dictionaries

 		
 Basic Dictionaries

 		
 Sensing matrices

 		
 Operators

 		
 Matrix operators

 		
 Composite Operators

 		
 Unitary/Orthogonal matrices

 		
 Dictionary Properties

 		
 Equiangular Tight Frames

 		
 Grassmannian Frames

 		
 Vector Spaces

 		
 Utility for constructing specific examples

 		
 Combinatorics

 		
 Steiner Systems

 		
 Matrix factorization algorithms

 		
 Various versions of QR Factorization

 		
 External Code

 		
 Timing

 		
 Noise

 		
 Noise generation

 		
 Noise measurement

 		
 Exercises

 		
 Creating a sparse signal

 		
 Creating a two ortho basis

 		
 Creating a Dirac-DCT two-ortho basis

 		
 Creating a random dictionary

 		
 Taking compressive measurements

 		
 Measuring dictionary properties

 		
 Gram matrix

 		
 Coherence

 		
 Babel function

 		
 Getting started with sparse recovery

 		
 Developing the hard thresholding algorithm

 		
 Developing the matching pursuit algorithm

 		
 Developing the orthogonal matching pursuit algorithm

 		
 Sparsifying an image

 		
 Scripts

 		
 Preamble

 		
 Figures

_images/dirac_dct_l_1_solution.png
Value

Value

1, minimization solution

1.5 T T
10 d
05+ | g
0
05} 4
4 L . . I I
[100 200 300 400 500 600
Index
X10° I1 minimization recovery error
1 . ; ! T T
05+ 1
[
05} 4
A L I I 1 1
0 100 200 300 400 500 600

Index

_images/dirac_dct_mp_solution.png
Value

0.04

0.02

-0.02

-0.04

Matching pursuit solution

. .
200 300 400
Index

Matching pursuit recovery error

-0.06,
0

I I
200 300 400
Index

600

_images/impulse_cosine_combination_signal.png
Value

Signal vector

1.2

081

06~

_images/impulse_cosine_dct_basis.png
Value

Representation in DCT space

15

L
250

300

L
100

.
150
Index

L
200

_static/up-pressed.png

_images/gaussian_matrix1.png

_static/up.png

_images/guassian_sensing_matrix_histogram.png
junoy

Norm

_images/impulse_cosine_dirac_dct.png
Value

1.2

08

0.6

0.4

0.2

-0.8
0

Representation vector

L
200

I
300
Index

400

600

_images/dirac_dct_2561.png
50 100 150 200 250 300 350 400 450 500

_images/measurement_vector_biuniform1.png
\\\\\

_images/measurement_vector_biuniform_noisy.png

_images/k_sparse_gaussian_signal.png
Value

Sparse vector

Index

L
200

L
250

300

_images/measurement_vector_biuniform.png
eeeeeeeeeeeeeeee

iy

_images/omp_algorithm.png
x,r, A = OMP(®,y):

20« 0;
0y /] r=y—dx
AN =g N // Index set of chosen atoms
k+«0: // Iteration counter
repeat
Rkt @Tpk // Match
AR = arg max|hk+1| // Identify
JEAR
ARFL ARy {ARFLY // Update support
k1l 0 ;
Ikt}rl « of k1Yl // Update representation LS
Ykl = gkl // Update approximation
Rl gy gkl // Update residual
k+k+1; // Update iteration counter
until halting criteria is satisfied:

kA AR R

_images/proxy_vector.png
Sparse vector
T

2
s 4
1
T]
2 0 5‘0 1 0‘0 1 ‘50 280 2‘50 300
2 Measurements
;7lxlr {H j‘H‘H"W
T T
2 L L L L L

0 10 20 30 40 50 60 70
4 Initial pro‘xy vector i i
2 4
. ».ml.ﬂjmm W,‘H, | ehierd Hm h”m; il

KT8 PO e T T T

150

_images/k_sparse_biuniform_signal.png
Value

1.5

05

05

Sparse vector

150
Index

L
200

L
250

300

_images/k_sparse_biuniform_signal1.png
Value

1.5

0.5

-0.5

-1.5

Sparse vector

150
Index

